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Abstract: - This work, first part of this study, describes a numerical tool to perform thermochemical non-

equilibrium simulations of reactive flow in two-dimensions. The Van Leer and Liou and Steffen Jr. schemes, in 

their first- and second-order versions, are implemented to accomplish the numerical simulations. The Euler and 

Navier-Stokes equations, on a finite volume context and employing structured and unstructured spatial 

discretizations, are applied to solve the “hot gas” hypersonic flows around a blunt body, around a double 

ellipse, and around an entry capsule, in two-dimensions. The second-order version of the Van Leer and Liou 

and Steffen Jr. schemes are obtained from a “MUSCL” extrapolation procedure  in a context of structured 

spatial discretization. In the unstructured context, only first-order solutions are obtained. The convergence 

process is accelerated to the steady state condition through a spatially variable time step procedure, which has 

proved effective gains in terms of computational acceleration. The reactive simulations involve a Mars 

atmosphere chemical model of nine species: N, O, N2, O2, NO, CO2, C, CO, and CN, based on the work of Kay 

and Netterfield. Fifty-three chemical reactions, involving dissociation and recombination, are simulated by the 

proposed model. The Arrhenius formula is employed to determine the reaction rates and the law of mass action 

is used to determine the source terms of each gas species equation. The results have indicated the Van Leer 

TVD scheme as the most accurate one, both inviscid and viscous cases. In this paper is presented the blunt 

body results. In Part II is presented the results with the double ellipse and the entry capsule. 

 

Key-Words: Thermochemical non-equilibrium, Mars entry, Nine species model, Hypersonic “hot gas” flow, 

Finite volume, Euler and Navier-Stokes equations, Two-dimensions. 

 

1 Introduction 
There has been significant interest in recent years in 

a mission to Mars. One such proposal is the 

MARSNET assessment study [1] concerning the 

potential contribution of ESA (European Space 

Agency) to a Mars Network mission in cooperation 

with NASA. NASA is currently studying a network 

mission MESUR (Mars Environmental Survey), 

involving the placement of up twenty small 

scientific stations on the surface of Mars. The 

objective of the proposed ESA activities is the 

provision of three of these stations to perform a 

variety of scientific experiments. The intended entry 

scenario is an unguided ballistic entry at a typical 

velocity of 6 km/s using a blunt sphere/cone 

configuration in which deceleration is provided 

predominantly by hypersonic aero-braking. It is 

important that the mass of the vehicle structure and 

thermal protection system (TPS) be minimized such 

that the payload delivered to the surface may be 

maximized. 

 The trajectory for a ballistic Martian entry takes 

the vehicle through regions where thermochemical 

non-equilibrium effects in the surrounding shock 

layer may be significant. For typical entry velocities 

(> 5 km/s) the temperature in the shock layer will be 

sufficiently high for dissociation of the freestream 

species to occur. The energy removed through such 

reactions may be released at the vehicle surface via 

recombination leading to significantly enhanced 

heat transfer rates. In order to design the TPS for 

minimum mass the heat transfer rate needs to be 

accurately predicted. This requires that any catalytic 

properties of the TPS material are accounted for in 

the heat transfer rate calculation since these will 

determine the extent of wall recombination. 

 As aforementioned, missions to other planets 

remain an objective for the ESA, and such missions 

generally involve the entry of a space vehicle into 

the atmospheres of those planets. In the context of 

such entry, aerothermodynamics is one of the 

critical technologies. While the thermochemical 

behavior of air under re-entry conditions has been 

studied extensively, and is to some degree 

understood, the same is not true for entries into 

other atmospheres. The atmospheres of Mars and 
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Venus, for example, contain significant amounts of 

carbon dioxide. In particular, the Mars atmosphere 

is a mixture of approximately 96% CO2 and 4% N2, 

with pressures much lower than the Earth’s 

atmosphere, so for any entry into the Martian 

atmosphere the non-equilibrium behavior of CO2 is 

likely to be of importance for a typical blunt body 

entry vehicle. This includes not just the influence of 

thermochemistry on the forebody heatshield 

flowfield, but also the influence on the shoulder 

expansion, base flow, and base heating 

environment. 

 Analyzing the reentry flows in Earth, [27] have 

proposed a numerical tool implemented to simulate 

inviscid and viscous flows employing the reactive 

gas formulation of thermal and chemical non-

equilibrium. The Euler and Navier-Stokes 

equations, employing a finite volume formulation, 

on the context of structured and unstructured spatial 

discretizations, were solved. These variants allowed 

an effective comparison between the two types of 

spatial discretization aiming verify their 

potentialities: solution quality, convergence speed, 

computational cost, etc. The aerospace problem 

involving the hypersonic flow around a blunt body, 

in two-dimensions, was simulated. The reactive 

simulations involved an air chemical model of five 

species: N, O, N2, O2 and NO. Seventeen chemical 

reactions, involving dissociation and recombination, 

were simulated by the proposed model. The 

Arrhenius formula was employed to determine the 

reaction rates and the law of mass action was used 

to determine the source terms of each gas species 

equation. Good results were obtained with such 

code. 

 This work, first part of this study, describes a 

numerical tool to perform thermochemical non-

equilibrium simulations of reactive flow in two-

dimensions. The [2; 22] schemes, in their first- and 

second-order versions, are implemented to 

accomplish the numerical simulations. The Euler 

and Navier-Stokes equations, on a finite volume 

context and employing structured and unstructured 

spatial discretizations, are applied to solve the “hot 

gas” hypersonic flows around a blunt body, around 

a double ellipse, and around an entry capsule, in 

two-dimensions. The second-order version of the [2; 

22] schemes are obtained from a “MUSCL” 

extrapolation procedure (details in [3]) in a context 

of structured spatial discretization. In the 

unstructured context, only first-order solutions are 

obtained. The convergence process is accelerated to 

the steady state condition through a spatially 

variable time step procedure, which has proved 

effective gains in terms of computational 

acceleration (see [4-5]). 

 The reactive simulations involve a Mars 

atmosphere chemical model of nine species: N, O, 

N2, O2, NO, CO2, C, CO, and CN. Fifty-three 

chemical reactions, involving dissociation and 

recombination, are simulated by the proposed 

model. The Arrhenius formula is employed to 

determine the reaction rates and the law of mass 

action is used to determine the source terms of each 

gas species equation. 

 In this paper only the blunt body solutions are 

presented. The results have demonstrated that the 

most correct aerodynamic coefficient of lift in the 

entry blunt body problem is obtained by the [2] 

scheme with first-order accuracy, in a viscous 

formulation, to a reactive condition of 

thermochemical non-equilibrium. Moreover, the 

[22] scheme presents the best mass fraction profiles 

at the stagnation line, characterizing good formation 

of O and CO. The results obtained with the double 

ellipse and the entry capsule geometries are 

presented in [31]. 

 

 

2 Formulation to Reactive Flow in 

Thermochemical Non-Equilibrium 
 

2.1 Reactive Equations in Two-Dimensions 
The reactive Navier-Stokes equations in thermal and 

chemical non-equilibrium were implemented on a 

finite volume context, in the two-dimensional space. 

In this case, these equations in integral and 

conservative forms can be expressed by: 

            

  




V V

CV

S

dVSdSnFQdV
t


, with 

                       jFFiEEF veve


 ,            (1) 

 

where: Q is the vector of conserved variables, V is 

the volume of a computational cell, F


 is the 

complete flux vector, n


 is the unity vector normal 

to the flux face, S is the flux area, SCV is the 

chemical and vibrational source term, Ee and Fe are 

the convective flux vectors or the Euler flux vectors 

in the x and y directions, respectively, Ev and Fv are 

the viscous flux vectors in the x and y directions, 

respectively. The i


 and j


 unity vectors define the 

Cartesian coordinate system. Thirteen (13) 

conservation equations are solved: one of general 

mass conservation, two of linear momentum 

conservation, one of total energy, eight of species 
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mass conservation and one of the vibrational 

internal energy of the molecules. Therefore, one of 

the species is absent of the iterative process. The 

CFD (“Computational Fluid Dynamics”) literature 

recommends that the species of biggest mass 

fraction of the gaseous mixture should be omitted, 

aiming to result in a minor numerical accumulation 

error, corresponding to the biggest mixture 

constituent (in this case, the Mars atmosphere). To 

the present study, in which is chosen a chemical 

model to the Mars atmosphere composed of nine (9) 

chemical species (N, O, N2, O2, NO, CO2, C, CO, 

and CN) and fifty-three (53) chemical reactions, this 

species is the CO2. The vectors Q, Ee, Fe, Ev, Fv and 

SCV can, hence, be defined as follows ([6]): 
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in which:  is the mixture density; u and v are 

Cartesian components of the velocity vector in the x 

and y directions, respectively; p is the fluid static 

pressure; e is the fluid total energy; 1, 2, 3, 4, 5, 

7, 8, and 9 are densities of the N, O, N2, O2, NO, 

C, CO and CN, respectively; 

         















































































y,vy,v

y99

y88

y77

y55

y44

y33

y22

y11

yy,vy,fyyxy

yy

xy

v

q

v

v

v

v

v

v

v

v

qqvu

0

Re

1
F ,        (4) 

      

  








































































 mols

s,vs

mols

ss,v
*

s,vs

9

8

7

5

4

3

2

1

CV

eee

0

0

0

0

S



















,   (5) 

H is the mixture total enthalpy; eV is the sum of the 

vibrational energy of the molecules; the ’s are the 

components of the viscous stress tensor; qf,x and qf,y 

are the frozen components of the Fourier-heat-flux 

vector in the x and y directions, respectively; qv,x 

and qv,y are the components of the Fourier-heat-flux 

vector calculated with the vibrational thermal 

conductivity and vibrational temperature; svsx and 

svsy represent the species diffusion flux, defined by 

the Fick law; x and y are the terms of mixture 

diffusion; v,x and v,y are the terms of molecular 

diffusion calculated at the vibrational temperature; 

s  is the chemical source term of each species 
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equation, defined by the law of mass action; *
ve  is 

the molecular-vibrational-internal energy calculated 

with the translational/rotational temperature; and s 

is the translational-vibrational characteristic 

relaxation time of each molecule. 

 The viscous stresses, in N/m
2
, are determined, 

according to a Newtonian fluid model, by: 
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in which  is the fluid molecular viscosity. 

 The frozen components of the Fourier-heat-flux 

vector, which considers only thermal conduction, 

are defined by: 

         
x

T
kq fx,f




    and   

y

T
kq fy,f




 ,     (7) 

where kf is the mixture frozen thermal conductivity, 

calculated conform presented in section 2.3. The 

vibrational components of the Fourier-heat-flux 

vector are calculated as follows: 

      
x

T
kq v
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
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y

T
kq v
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


 ,     (8) 

in which kv is the vibrational thermal conductivity 

and Tv is the vibrational temperature, what 

characterizes this model as of two temperatures: 

translational/rotational and vibrational. The 

calculation of Tv and kv are presented in section 2.3. 

 The terms of species diffusion, defined by the 

Fick law, to a condition of thermal non-equilibrium, 

are determined by ([6]): 
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with “s” referent to a given species, YMF,s being the 

molar fraction of the species, defined as: 
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and Ds is the species-effective-diffusion coefficient. 

 The diffusion terms x and y which appear in 

the energy equation are defined by ([7]): 

    
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ns

1s
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being hs the specific enthalpy (sensible) of the 

chemical species “s”. The specific enthalpy is 

calculated as function of the several modes of 

internal energy as follows: 
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                           TReh sis  .                     (12) 

The molecular diffusion terms calculated at the 

vibrational temperature, v,x and v,y, which appear 

in the vibrational-internal-energy equation are 

defined by ([6]): 

  



mols

s,vsxsx,v hv and 



mols

s,vsysy,v hv ,  (13) 

 

with hv,s being the specific enthalpy (sensible) of the 

chemical species “s” calculated at the vibrational 

temperature Tv. The sum of Eq. (13), as also those 

present in Eq. (5), considers only the molecules of 

the system, namely: N2, O2, NO, CO2, CO and CN. 

 

Table 1. Molecular mass and enthalpy formation of 

each species. 

 

Species M (g/g-mol) hf,s (J/g-mol) 

N 14.0 472,680.0 

O 16.0 249,180.0 

N2 28.0 0.0 

O2 32.0 0.0 

NO 30.0 90,290.0 

CO2 44.0 -393,510.0 

C 12.0 716,680.0 

CO 28.0 -110,530.0 

CN 26.0 435,100.0 

 

 The molecular mass and the formation enthalpy 

of each constituent of the Mars atmosphere are 
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given in Tab. 1. Note that to have hf,s in J/kg, it is 

only necessary to multiply it by 10
3
 and to divide it 

by the molecular mass. 

 

2.2 Chemical Model and Reaction Data 
The following species are considered for entry into 

the Martian atmosphere: 

 

N, O, N2, O2, NO, CO2, C, CO, and CN. 

 

These species represent the main constituents of a 

high temperature mixture of carbon dioxide and 

nitrogen. The CN molecule is included for 

assessment purposes though is not expected to be 

present in large mass fractions. For the moderate 

entry velocities considered in this work ionization is 

assumed to be unimportant, thus no ionic species are 

considered. This chemical model is based on the 

work of [29]. The reaction set used for these 

calculations is given in Tab. 2. Reverse reaction rate 

data are specified directly in Tab. 3. It is assumed 

that both the forward and reverse reaction rate 

coefficients have the following Arrhenius 

temperature dependence: 

 

                               
T/CeATk  ,                       (14) 

 

where the pre-exponential factor A, the temperature 

exponent  and the activation energy C are obtained 

from experiment and are given in Tabs. 2 and 3. M 

is a third body of collision and can be any species. 

Data for the forward reactions 1 to 4 and 6 to 10 are 

taken from [8]. 

 

Table 2. Reactions and forward coefficients. 

 

Reaction A  C 

O2+M  O+O+M 9.1x10
18

 -1.0 59370 

N2+M  N+N+M 2.5x10
19

 -1.0 113200 

NO+M  N+O+M 4.1x10
18

 -1.0 75330 

CO+M  C+O+M 4.5x10
19

 -1.0 128900 

CO2+M  CO+O+M 3.7x10
14

 0.0 52500 

N2+O   NO+N 7.4x10
11

 0.5 37940 

NO+O  O2+N 3.0x10
11

 0.5 19460 

CO+O  C+O2 2.7x10
12

 0.5 69540 

CO2+O  CO+O2
 1.7x10

13
 0.0 26500 

CO+N  NO+C 2.9x10
11

 0.5 53630 

CN+O  NO+C 1.6x10
13

 0.1 14600 

CO+N  CN+O 2.0x10
14

 0.0 38600 

N2+C  CN+N 2.0x10
14

 0.0 23200 

 

Reaction 5 and 11 to 13 are taken from [9]. Data for 

the reverse reactions are taken from [8], except for 

reactions 5 and 9 for which data are from reference 

[10], and reactions 11 to 13 where data are from 

[11]. For dissociation reactions the preferential 

model of Park is used whereby the forward rates are 

governed by an average temperature va T.TT  . 

With all combinations to M, a total of fifth-three 

(53) reactions are obtained. 

 

Table 3. Reactions and reverse coefficients. 

 

Reaction A  C 

O2+M  O+O+M 9.0x10
15

 -0.5 0.0 

N2+M  N+N+M 1.5x10
18

 -1.0 0.0 

NO+M  N+O+M 3.5x10
18

 -1.0 0.0 

CO+M  C+O+M 1.0x10
18

 -1.0 0.0 

CO2+M  CO+O+M 2.4x10
15

 0.0 2184 

N2+O   NO+N 1.6x10
11

 0.5 0.0 

NO+O  O2+N 9.5x10
09

 1.0 0.0 

CO+O  C+O2 9.4x10
12

 0.25 0.0 

CO2+O  CO+O2
 2.5x10

12
 0.0 24000 

CO+N  NO+C 2.6x10
10

 0.5 0.0 

CN+O  NO+C 3.8x10
12

 0.5 4500 

CO+N  CN+O 6.3x10
11

 0.5 4500 

N2+C  CN+N 4.4x10
14

 0.0 4500 

 

2.3 Transport Properties 
For species N, O, N2, O2 and NO curve fits for 

viscosity as a function of temperature have been 

developed by [12] which are of the form 

 

            CTlnBTlnAexp1.0 .     (15) 

 

[13] develops equivalent curve fits for CO and CO2, 

while C is assumed to behave as O. For CN data are 

from [14]. Data for these curve fits are given in Tab. 

4. 

 

Table 4. Coefficients for viscosity curve fits. 

 

Species A B C 

N 0.0115572 0.4294404 -12.4327495 

O 0.0203144 0.4294404 -11.6031403 

N2 0.0268142 0.3177838 -11.3155513 

O2 0.0449290 -0.0826158 -9.2019475 

NO 0.0436378 -0.0335511 -9.5767430 

CO2 -0.0195274 1.0132950 -13.9787300 

C 0.0203144 0.4294404 -11.6031403 

CO -0.0195274 1.0478180 -14.3221200 

CN -0.0025000 0.6810000 -12.4914000 
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The thermal conductivity of translational and 

rotational energies for each species is derived from 

species viscosities using an Eucken relation: 

 

                   i,r,vi,t,vi,tr cc2/5k  ,                (16) 

where: 

 

             

RTc

.atomsfor,0.0

moleculesfor,RT2/3
c

r,v

t,v








            (17) 

 

The total viscosity and conductivity of the gas 

mixture are calculated using the semi-empirical rule 

of [15]. To the viscosity, for instance: 

 

                             
 




ns

1i i

iiX
,                          (18) 

 

where Xi is the mole fraction of species i and 

 

               



















































ns

1j

j

i

2
4/1

i

j

j

i

j

i

M

M
18

M

M
1X

.        (19) 

 

Xi can be calculated from 

 

                               
i

i
i

M

Mc
X  ,                          (20) 

 

with: 

 

                            



ns

1j j

j

M

c
1M ;                      (21) 

                      





j

jc  (Mass fraction).              (22) 

 

Diffusion coefficients are computed as outlined by 

[16]. The species diffusion coefficients are 

calculated from 

 

                       

 

i

i
i

i
X1

Dc1
M

M

D




  .                 (23) 

 

The diffusion coefficient D is calculated from the 

Schmidt number: 

 

                                   
D

Sc



 .                         (24) 

 

The Schmidt number is set to 0.5 for neutral species 

and 0.25 for ions. 

 The species vibrational conductivities are also 

calculated by the species viscosity and the Eucken 

formula: 

 

                               iii,v Rk  .                    (25) 

 

 The vibrational temperature is determined from 

the definition of the internal vibrational energy of 

the mixture, on an iterative process, and uses the 

Newton-Raphson method to find the root, which is 

merely the approximate vibrational temperature. 

Three steps are suffice to obtain a good 

approximation. 

 

2.4 Source Terms 
The source terms for the species mass fractions in 

the chemically reacting flow are giving by: 

 

  


nr

1r

'

r,i

''

r,iii M  

      








 







maxj

1j

jji,r

maxj

1j

jji,f

''
r,j

'
r,j MkMk . (26) 

 

The reaction rate coefficients kf and kr are calculated 

as a function of a rate controlling temperature Ta, as 

given in section 2.2. 

 

2.5 Vibrational Relaxation Model 
The vibrational internal energy of a molecule, in 

J/kg, is defined by: 

                            
1e

R
e

Vs,V T

s,vs

s,v






,                  (27) 

and the vibrational internal energy of all molecules 

is given by: 

                              



mols

s,vsV ece .                   (28) 

The heat flux due to translational-vibrational 

relaxation, according to [17], is given by: 
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s

vs,v

*

s,v

ss,VT

)T(e)T(e
q




 ,          (29) 

 

where: 
*

s,ve  is the vibrational internal energy 

calculated at the translational temperature to the 

species “s”; and s  is the translational-vibrational 

relaxation time to the molecular species, in s. The 

relaxation time is the time of energy exchange 

between the translational and vibrational molecular 

modes. 

2.5.1 Vibrational characteristic time of [18] 

According to [18], the relaxation time of molar 

average of [19] is described by: 

          






 
ns

1l

WM

l,sl

ns

1l

l

WM

ss ,      (30) 

with: 

 
WM

l,s

  is the relaxation time between species of 

[19]; 

 
WM

s

  is the vibrational characteristic time of 

[19]; 

  lAVll mNc  and AVll NMm  . (31) 

 

2.5.2 Definition of 
WM

l,s

 : 

For temperatures inferior to or equal to 8,000 K, 

[19] give the following semi-empirical correlation to 

the vibrational relaxation time due to inelastic 

collisions: 

            
  42.18015.0TA

l

WM

l,s

41
l,s

31
l,se

p

B 










 ,       (32) 

where: 

 B = 1.013x10
5
Ns/m

2
 ([20]); 

 pl is the partial pressure of species “l” in N/m
2
; 

 
34

s,v

21

l,s

3

l,s 10x16.1A  
 ([20]);                  (33) 

 

ls

ls

l,s
MM

MM


 ,                                          (34) 

being the reduced molecular mass of the collision 

partners: kg/kg-mol; 

 T and s,v  in Kelvin. 

 The values of the characteristic vibrational 

temperature are given in Tab. 5. In the absence of 

specific vibrational relaxation data for CN the 

molecule has been assumed to behave as CO. 

 

Table 5. Vibrational energy constants. 

 

Species v (K) 

N2 3395.0 

O2 2239.0 

NO 2817.0 

CO 3074.0 

CN 3074.0 

2.5.3 [21] correction time 

For temperatures superiors to 8,000 K, the Eq. (32) 

gives relaxation times less than those observed in 

experiments. To temperatures above 8,000 K, [21] 

suggests the following relation to the vibrational 

relaxation time: 

                            
svs

P

s
n

1


 ,                         (35) 

where: 

                            



TR8 s

s ,                          (36) 

being the molecular average velocity in m/s; 

                   

2

20

v
T

000,50
10 








 

,                   (37) 

being the effective collision cross-section to 

vibrational relaxation in m
2
; and 

                           sss mn  ,                            (38) 

being the density of the number of collision particles 

of species “s”. s  in kg/m
3
 and ms in kg/particle, 

defined by Eq. (31). 

 Combining the two relations, the following 

expression to the vibrational relaxation time is 

obtained: 

 

                       
P

s

WM

ss  
.                          (39) 
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[21] emphasizes that this expression [Eq. (39)] to 

the vibrational relaxation time is applicable to a 

range of temperatures much more vast. 
 

 

3 Structured Van Leer and Liou and 

Steffen Jr. Algorithms to 

Thermochemical Non-Equilibrium 

The approximation of the integral equation (1) to a 

rectangular finite volume yields a system of 

ordinary differential equations with respect to time: 

 

                        j,ij,ij,i CdtdQV  ,                    (40) 

 

with Ci,j representing the net flux (residue) of 

conservation of mass, of linear momentum, of total 

energy, of species mass conservation, and of 

vibrational energy in the Vi,j volume. The cell 

volume is defined by: 
 

        j,1ij,i1j,1ij,i1j,1ij,1i1j,1ij,1ij,ij,i yxxyxxyxx5.0V

      1j,1ij,i1j,ij,i1j,i1j,1i1j,i1j,1ij,i yxxyxxyxx5.0   , 

(41) 

where a computational cell and its flux surfaces are 

defined in Fig. 1. 

 
Figure 1. Structured computational cell. 

 

 As shown in [22], the discrete convective flux 

calculated by the AUSM scheme (“Advection 

Upstream Splitting Method”) can be interpreted as a 

sum involving the arithmetical average between the 

right (R) and the left (L) states of the (i+1/2,j) cell 

face, related to cell (i,j) and its (i+1,j) neighbour, 

respectively, multiplied by the interface Mach 

number, and a scalar dissipative term. Hence, to the 

(i+1/2,j) interface, considering the dynamical part of 

the formulation: 
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(42) 

 

 The components of the unity vector normal to the 

flux interface and the area of the flux interface “l”, 
l

xn , 
l

yn  and 
lS , are defined as: 

 

  5.02

l

2

ll

l

x yxyn  , 

  5.02

l

2

ll

l

y yxxn  , 

                            5.02

l

2

l

l yxS  .                 (43) 

Expressions to xl and yl are given in Tab. 6. The 

area components are obtained by the product of the 

respective normal vector component and the area S. 

Table 6. Values of xl and yl to the structured case. 

 

Interface xl yl 

l = (i,j-1/2) 
jij1i xx ,,   jij1i yy ,,   

l = (i+1/2,j) 
j1i1j1i xx ,,    j1i1j1i yy ,,    

l = (i,j+1/2) 
1j1i1ji xx   ,,  1j1i1ji yy   ,,  

l = (i-1/2,j) 
1jiji xx  ,,  1jiji yy  ,,  

 

The “a” quantity represents the frozen speed of 

sound. Mi+1/2,j defines the advection Mach number at 

the (i+1/2,j) face of the (i,j) cell, which is calculated 

according to [22] as: 

 

                            RLl MMM ,                     (44) 

where the separated Mach numbers M
+/-

 are 

defined by the [2] formulas: 

 

           ;1

;1Mif,0

Mif,1M25.0

;1Mif,M

M
2





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
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

      (45a) 
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             ;1

.1Mif,M

Mif,1M25.0

;1Mif,0

M
2

















      (45b) 

 

ML and MR represent the Mach number associated 

with the left and right states, respectively. The 

advection Mach number is defined by: 

 

                          aSvSuSM yx  .                 (46) 

 

 The pressure at the (i+1/2,j) face of the (i,j) cell 

is calculated by a similar way: 

 

                             RLl ppp ,         (47) 

 

with p
+/-

 denoting the pressure separation defined 

according to the [2] formulas: 
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p
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;        (48) 

 

 The definition of the dissipative term  

determines the particular formulation of the 

convective fluxes. According to [23], the choice 

below corresponds to the [2] scheme: 
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(49) 

 

and the choice below corresponds to the [22] 

scheme: 

 

                             j,2/1ij,2/1i M   ;                  (50) 

 

the discrete-chemical-convective flux is defined by: 
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and the discrete-vibrational-convective flux is 

determined by: 

 

    



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                     
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2

1
  .        (52) 

 

 The time integration is performed employing the 

Runge-Kutta explicit method of five stages, second-

order accurate, to the three types of convective flux.  

 To the dynamic part, this method can be 

represented in general form by: 

           
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to the chemical part, it can be represented in general 

form by: 

    
)k(

j,i

)1n(

j,i

)1k(

j,iCj,i

)1k(

j,ij,ik

)0(

j,i

)k(

j,i

)n(

j,i

)0(

j,i

QQ

QSVQRtQQ

QQ










, 

(54) 

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS
Edisson Sávio De Góes Maciel, 
Amilcar Porto Pimenta

E-ISSN: 2224-3429 34 Issue 1, Volume 8, January 2013



where the chemical source term SC is calculated 

with the temperature Ta. Finally, to the vibrational 

part: 

    
)k(

j,i

)1n(

j,i

)1k(

j,ivj,i
)1k(

j,ij,ik
)0(

j,i

)k(

j,i

)n(

j,i

)0(

j,i

QQ

QSVQRtQQ

QQ










, 

(55) 

in which: 

               


 
mols

s,vs,C

mols

s,VTv eSqS ;           (56) 

k = 1,...,5; 1 = 1/4, 2 = 1/6, 3 = 3/8, 4 = 1/2 and 

5 = 1. This scheme is first-order accurate in space 

and second-order accurate in time. The second-order 

of spatial accuracy is obtained by the “MUSCL” 

procedure. 

 The viscous formulation follows that of [24], 

which adopts the Green theorem to calculate 

primitive variable gradients. The viscous vectors are 

obtained by arithmetical average between cell (i,j) 

and its neighbours. As was done with the convective 

terms, there is a need to separate the viscous flux in 

three parts: dynamical viscous flux, chemical 

viscous flux and vibrational viscous flux. The 

dynamical part corresponds to the first four 

equations of the Navier-Stokes ones, the chemical 

part corresponds to the following eight equations 

and the vibrational part corresponds to the last 

equation. 

 

 

4 MUSCL Procedure 
Second order spatial accuracy can be achieved by 

introducing more upwind points or cells in the 

schemes. It has been noted that the projection stage, 

whereby the solution is projected in each cell face 

(i-1/2,j; i+1/2,j) on piecewise constant states, is the 

cause of the first order space accuracy of the 

Godunov schemes ([3]). Hence, it is sufficient to 

modify the first projection stage without modifying 

the Riemann solver, in order to generate higher 

spatial approximations. The state variables at the 

interfaces are thereby obtained from an 

extrapolation between neighboring cell averages. 

This method for the generation of second order 

upwind schemes based on variable extrapolation is 

often referred to in the literature as the MUSCL 

approach. The use of nonlinear limiters in such 

procedure, with the intention of restricting the 

amplitude of the gradients appearing in the solution, 

avoiding thus the formation of new extrema, allows 

that first order upwind schemes be transformed in 

TVD high resolution schemes with the appropriate 

definition of such nonlinear limiters, assuring 

monotone preserving and total variation diminishing 

methods. Details of the present implementation of 

the MUSCL procedure, as well the incorporation of 

TVD properties to the schemes, are found in [3]. 

The expressions to calculate the fluxes following a 

MUSCL procedure and the nonlinear flux limiter 

definitions employed in this work, which 

incorporates TVD properties, are defined as follows. 

 The conserved variables at the interface (i+1/2,j) 

can be considered as resulting from a combination 

of backward and forward extrapolations. To a linear 

one-sided extrapolation at the interface between the 

averaged values at the two upstream cells (i,j) and 

(i-1,j), one has: 

 

  j,1ij,ij,i
L

j,2/1i QQ
2

QQ  


 , cell (i,j);      (57) 

 j,1ij,2ij,1i
R

j,2/1i QQ
2

QQ  


 , cell (i+1,j), (58) 

 

leading to a second order fully one-sided scheme. If 

the first order scheme is defined by the numerical 

flux 

                       j,1ij,ij,2/1i Q,QFF                      (59) 

 

the second order space accurate numerical flux is 

obtained from 

 

                    R
j,2/1i

L
j,2/1i

)2(
j,2/1i Q,QFF   .             (60) 

 

Higher order flux vector splitting methods, such as 

those studied in this work, are obtained from: 

 

           R
j,2/1i

L
j,2/1i

)2(
j,2/1i QFQFF 





  .        (61) 

 

All second order upwind schemes necessarily 

involve at least five mesh points or cells. 

 To reach high order solutions without 

oscillations around discontinuities, nonlinear 

limiters are employed, replacing the term  in Eqs. 

(57) and (58) by these limiters evaluated at the left 

and at the right states of the flux interface. To define 

such limiters, it is necessary to calculate the ratio of 

consecutive variations of the conserved variables. 

These ratios are defined as follows: 

 

                 j,1ij,ij,ij,1ij,2/1i QQQQr 

        (62a) 
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               j,ij,1ij1ij,2ij,2/1i QQQQr  

 ,    (62b) 

 

where the nonlinear limiters at the left and at the 

right states of the flux interface are defined by 

 
 j,2/1i

L r  and  
 j,2/1i

R r1 . In this 

work, five options of nonlinear limiters were 

considered to the numerical experiments. These 

limiters are defined as follows: 

 

                
l

ll

l
VL
l

r1

rr
)r(




 , [25] limiter;          (63) 

        
2
l

2
ll

l
VA
l

r1

rr
)r(




 , Van Albada limiter;      (64) 

        llll
MIN
l signal,rMIN,0MAXsignalr  , 

minmod limiter;                                                   (65) 

            2,rMIN,1,r2MIN,0MAXr lll
SB
l  , 

“Super Bee” limiter, due to [26];                         (66) 

             ,rMIN,1,rMIN,0MAXr lll
L

l , -

limiter,                                                                  (67) 

 

with “l” varying from 1 to 13 (two-dimensional 

space), signall being equal to 1.0 if rl  0.0 and -1.0 

otherwise, rl is the ratio of consecutive variations of 

the lth conserved variable and  is a parameter 

assuming values between 1.0 and 2.0, being 1.5 the 

value assumed in this work. 

 With the implementation of the numerical flux 

vectors following this MUSCL procedure, second 

order spatial accuracy and TVD properties are 

incorporated in the algorithms. 

 

5 Unstructured Van Leer and Liou 

and Steffen Jr. Algorithms to 

Thermochemical Non-Equilibrium 
The cell volume on an unstructured context is 

defined by: 

 

   1n2n1n3n2n3n3n2n3n1n2n1ni yxxyyxyxxyyx5.0V  , 

(68) 

 

with n1, n2 and n3 being the nodes of a given 

triangular cell. The description of the computational 

cell and its nodes, flux interfaces and neighbors are 

shown in Fig. 2. 

 
Figure 2. Schematic of a cell and its neighbours, 

nodes and flux interfaces. 

 

 The area components at the “l” interface are 

defined by: 

 

                 ll
x

l
x SnS     and   ll

y
l
y SnS  ,        (69) 

 

where l
xn , l

yn  and S
l
 are defined as: 

 

   5.02
l

2
ll

l
x yxyn  ,   5.02

l
2
ll

l
y yxxn  ; 

                            5.02
l

2
l

l yxS  .                     (70) 

 

Expressions to xl and yl are given in Tab. 7. 

 

Table 7. Values of xl and yl. 

 

Interface xl yl 

l = 1 1n2n xx   1n2n yy   

l = 2 2n3n xx   2n3n yy   

l = 3 3n1n xx   3n1n yy   

 

Considering the two-dimensional and unstructured 

case, the algorithm follows that described in section 

3. Hence, the discrete-dynamic-convective flux is 

defined by: 
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the discrete-chemical-convective flux is defined by: 
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(72) 

 

and the discrete-vibrational-convective flux is 

determined by: 

                        

         









LvRv1RvLv111 aeae

2

1
aeaeM

2

1
SR .           

(73) 

 

 The time integration is performed employing the 

Runge-Kutta explicit method of five stages, second-

order accurate, to the three types of convective flux. 

To the dynamic part, this method can be represented 

in general form by: 

 

 
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
,             (74) 

 

to the chemical part, it can be represented in general 

form by: 

 

    
)k(

i

)1n(

i

)1k(

iCi

)1k(

iik

)0(

i

)k(

i

)n(

i

)0(

i

QQ

QSVQRtQQ

QQ










, (75) 

 

where the chemical source term SC is calculated 

with the temperature Ta. Finally, to the vibrational 

part: 
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, (76) 

 

in which: 

 




 
mols

s,vs,C

mols

s,VTv eSqS ;                      (77) 

 

with k = 1,...,5; 1 = 1/4, 2 = 1/6, 3 = 3/8, 4 = 1/2 

and 5 = 1. The heat flux due to translational-

vibrational relaxation, qT-V,s, is defined in Eq. (29). 

This scheme is first-order accurate in space and 

second-order accurate in time. 

 

 

6 Degeneracy of CO2, Vibrational 

Energy, Frozen Speed of Sound and 

Total Energy Equation 
The CO2 presents three levels of degeneracy, each 

one corresponding to a characteristic vibrational 

mode. The characteristic vibrational temperature 

and the respective degeneracy weights are given in 

Tab. 8. 

 

Table 8. Values of g’s and v’s. 

 

Degeneracy g v 

1 1 1903.0 

2 2 945.0 

3 1 3329.0 

 

Hence, the vibrational energy is determined by: 

 

2,vCO21,vCO1

ns

1s

ns

6s
1s

s,vss,vsv ecgecgecece
22

 





 

        3,vCO3 ecg
2

 ,                                               (78) 

 

with ev given by Eq. (27). The frozen speed of 

sound is given by the following equation: 

 

            
mix,vc

R




    and   






p)1(
a ,       (79) 

 

with: 

 

 R being the universal gas constant; 

 





ns

1s s

s

M
;                                                   (80) 

 



ns

1s

s,vsmix,v ccc ,                                         (81) 

 

cv,s being the specific heat at constant volume for 

each species. The total energy is given by: 
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






 22

vrefmixmix,fmix,v vu
2

1
eTRhTce , 

(82) 

 

where: 

 



ns

1s

s,fsmix,f hch ;                                   (83) 

 



ns

1s

ssmix RcR ;                                           (84) 

 Tref = 298.15K. 

 

 

7 Initial and Boundary Conditions 

 

7.1 Initial Condition 

As initial conditions, the following flow properties 

are given: init, uinit, , Ttr,init, Tv,init, cs(1), cs(2), cs(3), 

cs(4), cs(5), cs(7) , cs(8), and cs(9), in which:  is the 

flow attack angle, Ttr,init is the initial 

translational/rotational temperature, Tv,init is the 

initial vibrational temperature, and the cs’s are the 

initial mass fractions of the N, O, N2, O2, NO, C, 

CO and CN. In this way, the cs(6) is easily obtained 

from: 

 

                               





ns

6s
1s

ss c1)6(c                     (85) 

 

Initially, Tv,init = Ttr,init. The dimensionless variables 

which will compose the initial vector of conserved 

variables are determined as follows: 

 

dim = init/, udim = uinit/achar, vdim = udim/tg(); 

       Ttr,dim = Ttr,init/achar and Tv,dim = Tv,init/achar,      (86) 

with: 

  defining the freestream density; 

  is the flow attack angle; 

 achar obtained from tables of the Mars atmosphere 

properties. 

 

 Considering the species mass fractions and with 

the values of the species specific heat at constant 

volume, it is possible to obtain the mixture specific 

heat at constant volume. The mixture formation 

enthalpy is also obtained from the mass fractions 

and from the species formation enthalpies. The 

dimensionless internal vibrational energy to each 

species is obtained from: 

 

  1eRe dim,V2N,V

222

T

N,vNNdim,,v 


; 

  1eRe dim,V2O,V

222

T

O,vOOdim,,v 


; 

  1eRe dim,VNO,V T

NO,vNONOdim,,v 


; 

  ;1eR)1(ge dim,V)1(2CO,V

222
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   ;1eRe dim,VCO,V T

CO,vCOCOdim,,v 


 

             
  1eRe dim,VCN,V T

CN,vCNCNdim,,v 


.       (87) 

 

 The total internal vibrational energy of the 

system is determined by Eq. (28). Finally, the 

dimensionless total energy is determined by Eq. 

(82). The initial vector of conserved variables is, 

therefore, defined by: 
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Q .                      (88) 

7.2 Boundary Conditions 

(a) Dynamical Part: 

The boundary conditions are basically of three 

types: solid wall, entrance and exit. These 

conditions are implemented in special cells, named 

ghost cell. 

 

(a.1) Wall condition: This condition imposes the 

flow tangency at the solid wall. This condition is 

satisfied considering the wall tangent velocity 

component of the ghost volume as equals to the 

respective velocity component of its real neighbor 

cell. At the same way, the wall normal velocity 

component of the ghost cell is equaled in value, but 

with opposite signal, to the respective velocity 

component of the real neighbor cell. It results in: 
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                      ;                 (89) 

                     ;              (90) 

 

where, for the (i+1/2,j) interface: 

 

                       ;                (91) 

                       .                (92) 

 

Hence, the ghost cell velocity components are 

written as: 

 

                ;       (93) 

               ,     (94) 

 

with “g” related with ghost cell and “r” related with 

real cell. To the viscous case, the boundary 

condition imposes that the ghost cell velocity 

components be equal to the real cell velocity 

components, with the negative signal: 

 

                                ;                            (95) 

                                ,                             (96) 

 

The pressure gradient normal to the wall is 

assumed be equal to zero, following an inviscid 

formulation and according to the boundary layer 

theory. The same hypothesis is applied to the 

temperature gradient normal to the wall, considering 

adiabatic wall. The ghost volume density and 

pressure are extrapolated from the respective values 

of the real neighbor volume (zero order 

extrapolation), with these two conditions. The total 

energy is obtained by the state equation of a perfect 

gas. 

 

(a.2) Entrance condition: 

(a.2.1) Subsonic flow: Three properties are specified 

and one is extrapolated, based on analysis of 

information propagation along characteristic 

directions in the calculation domain ([28]). In other 

words, three characteristic directions of information 

propagation point inward the computational domain 

and should be specified. Only the characteristic 

direction associated to the “(qn-a)” velocity cannot 

be specified and should be determined by interior 

information of the calculation domain. The total 

energy was the extrapolated variable from the real 

neighbor volume, to the studied problems. Density 

and velocity components had their values 

determined by the initial flow properties. 

(a.2.2) Supersonic flow: All variables are fixed with 

their initial flow values. 

 

(a.3) Exit condition: 

(a.3.1) Subsonic flow: Three characteristic 

directions of information propagation point outward 

the computational domain and should be 

extrapolated from interior information ([28]). The 

characteristic direction associated to the “(qn-a)” 

velocity should be specified because it penetrates 

the calculation domain. In this case, the ghost 

volume’s total energy is specified by its initial 

value. Density and velocity components are 

extrapolated. 

(a.3.2) Supersonic flow: All variables are 

extrapolated from the interior domain due to the fact 

that all four characteristic directions of information 

propagation of the Euler equations point outward 

the calculation domain and, with it, nothing can be 

fixed. 

 

(b) Chemical Part: 

The boundary conditions to the chemical part are 

also of three types: solid wall, entrance and exit. 

 

(b.1) Wall condition: In both inviscid and viscous 

cases, the non-catalytic wall condition is imposed, 

which corresponds to a zero order extrapolation of 

the species density from the neighbor real cells. 

 

(b.2) Entrance condition: In this case, the species 

densities of each ghost cell are fixed with their 

initial values (freestream values). 

 

(b.3) Exit condition: In this case, the species 

densities are extrapolated from the values of the 

neighbor real cells. 

 

(c) Vibrational Part: 

The boundary conditions in the vibrational part are 

also of three types: solid wall, entrance and exit. 

 

(c.1) Wall condition: In both inviscid and viscous 

cases, the internal vibrational energy of the ghost 

cell is extrapolated from the value of its neighbor 

real cell. 

 

(c.2) Entrance condition: In this case, the internal 

vibrational energy of each ghost cell is fixed with its 

initial value (freestream value). 

 

(c.3) Exit condition: In this case, the internal 

vibrational energy is extrapolated from the value of 

the neighbor real cell. 
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8 Spatially Variable Time Step 

The basic idea of this procedure consists in keeping 

constant the CFL number in all calculation domain, 

allowing, hence, the use of appropriated time steps 

to each specific mesh region during the convergence 

process. According to the definition of the CFL 

number, it is possible to write: 

                        j,ij,ij,i csCFLt  ,                  (97) 

 

where CFL is the “Courant-Friedrichs-Lewy” 

number to provide numerical stability to the 

scheme;   j,i

5.022
j,i avuc





   is the maximum 

characteristic speed of information propagation in 

the calculation domain; and   j,is  is a 

characteristic length of information transport. On a 

finite volume context,   j,is  is chosen as the minor 

value found between the minor centroid distance, 

involving the (i,j) cell and a neighbor, and the minor 

cell side length. 

 

 

9 Configurations and Employed 

Meshes 

Figures 3 and 4 present the employed meshes to the 

structured simulations in two-dimensions for the 

reactive flow around the blunt body. Figure 3 shows 

the structured mesh to inviscid simulations, whereas 

Fig. 4 presents the structured mesh to viscous 

simulations. The viscous case mesh exhibits an 

exponential stretching in the  direction with a 

value of 7.5%. The inviscid case mesh has 3,776 

rectangular cells and 3,900 nodes, which 

corresponds in finite differences to a mesh of 65x60 

points. The viscous case mesh has the same number 

of rectangular cells and nodes. 

 Figures 5 and 6 present the employed meshes 

applied to the unstructured simulations in two-

dimensions for the reactive flow around the studied 

blunt body. Figure 5 shows the unstructured mesh to 

the inviscid simulations, whereas Fig. 6 exhibits the 

unstructured mesh to the viscous simulations. The 

viscous case mesh presents an exponential 

stretching of 7,5% in the  direction. In the inviscid 

case, a mesh of 7,552 triangular cells and 3,900 

nodes is employed, which corresponds to a mesh of 

65x60 points in finite differences. 

 
Figure 3. 2D structured mesh for inviscid flow. 

 
Figure 4. 2D structured mesh for viscous flow. 

 
Figure 5. 2D unstructured mesh for inviscid 

flow. 
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Figure 6. 2D unstructured mesh for viscous 

flow. 

 
Figure 7. Double ellipse configuration. 

 
Figure 8. Entry capsule configuration. 

 
 In the viscous case, the same number of 

triangular cells and grid points is showed, 

corresponding to a finite difference mesh of 65x60 

points. The unstructured meshes are obtained 

transforming a mesh of quadrilaterals in a mesh of 

triangles and the connectivity, neighboring, ghost 

and node coordinate tables are generated in a pre-

processing stage of the computation. 
 Figures 7 and 8 exhibit the geometrical 

configurations of the double ellipse and of the entry 

capsule. In Figure 7 is presented the double ellipse 

configuration and in Fig. 8 is presented the entry 

capsule configuration. 

 
Figure 9. 2D structured mesh for inviscid case. 

 
Figure 10. 2D structured mesh for viscous flow. 

 
Figure 11. 2D structured mesh for inviscid flow. 
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Figure 12. 2D structured case for viscous flow. 

 

 The double ellipse mesh is composed of 3,528 

rectangular cells and 3,650 nodes in the structured 

case and of 7,056 triangular cells and 3,650 nodes in 

the unstructured case. The entry capsule is 

composed of 3,136 rectangular cells and 3,250 

nodes in the structured case. The unstructured case 

is not studied for this problem. 
 Figures 9 and 10 present the inviscid and viscous 

double ellipse structured meshes, whereas Figs. 11 

and 12 present the inviscid and viscous entry 

capsule structured meshes. As aforementioned, two 

unstructured cells are obtained dividing each 

rectangular cell into two triangular cells, with the 

generation of the respective tables. 

 

 

10  Results 
Tests were performed in a notebook with INTEL 

PENTIUM Dual Core processors of 2.30GHz and 

2GBytes of RAM. As the interest of this work is 

steady state problems, it is necessary to define a 

criterion which guarantees the convergence of the 

numerical results. The criterion adopted was to 

consider a reduction of no minimal three (3) orders 

of magnitude in the value of the maximum residual 

in the calculation domain, a typical CFD-

community criterion. In the simulations, the attack 

angle was set equal to zero. 

 

10.1 Blunt Body Problem 
The initial conditions are presented in Tab. 9. The 

Reynolds number is obtained from data available in 

the Mars atmosphere tables [30]. The geometry of 

this problem is a blunt body with 0.85m of nose 

ratio and rectilinear walls with 10º inclination. The 

far field is located at 20.0 times the nose ratio in 

relation to the configuration nose. 

Table 9. Initial conditions to the blunt body 

problem. 

 

Property Value 

M 31.0 

 0.0002687 kg/m
3
 

p 8.3039 Pa 

U 6,155 m/s 

T 160.9 K 

Altitude 41,700 m 

cN 0.00 

cO 0.00 

2Nc  0.03 

2Oc  0.00 

cNO 0.00 

2COc  0.97 

cC 0.00 

cCO 0.00 

cCN 0.00 

L 1.7 m 

Re 3.23x10
5
 

10.1.1 Inviscid, first order, structured results 

Figures 13 and 14 exhibit the pressure contours 

obtained by [2] and [22], respectively. As can be 

observed, the [2] pressure field is more severe than 

the [22] pressure field. Good symmetry 

characteristics are observed in both figures. 

 
Figure 13. Pressure contours ([2]). 

 

 Figures 15 and 16 present the Mach number 

contours captured by [2] and [22], respectively. 

Good symmetry properties are observed in both 

figures. Quantitatively, there are no meaningful 

differences between the two fields. Both peaks are 

very high and an appropriate thermal protection is 

necessary to guarantee the integrity of the spatial 

vehicle. This thermal protection should be located 
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mainly in the blunt nose, which receives the main 

contribution of the heating. To this range of 

temperature, the main heating contribution is due to 

radiation and a blunt slender profile is 

recommended to reduce such effect, as was used in 

this example. 

 
Figure 14. Pressure contours ([22]). 

 
Figure 15. Mach number contours ([2]). 

 
Figure 16. Mach number contours ([22]). 

 
Figure 17. Translational/Rotational temperature 

contours ([2]). 

 

 Figures 17 and 18 show the 

translational/rotational temperature contours 

obtained by [2] and [22], respectively. As can be 

observed, the temperatures are very high in 

comparison with the temperatures observed in 

reentry flows in earth ([27]). The [2] scheme 

captures a temperature peak of 18,438K, whereas 

the [22] scheme captures a temperature peak of 

16,370K. 

 
Figure 18. Translational/Rotational temperature 

contours ([22]). 

 

 Figures 19 and 20 exhibit the vibrational 

temperature contours captured by [2] and [22], 

respectively. As can be seen, the most severe 

vibrational temperature is presented by the [22] 

solution. The solution presented by the [2] scheme 

is less intense than the [22] solution. Moreover, the 

[2] solution is smoother, whereas the [22] solution 

presents wiggles close to the inclined walls/blunt 

nose interface regions. 
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Figure 19. Vibrational temperature contours ([2]). 

 
Figure 20. Vibrational temperature contours ([22]). 

 
Figure 21. Mass fraction distributions at the 

stagnation line ([2]). 

 

 Figure 21 shows the mass fraction distributions 

at the stagnation line of the blunt body, generated by 

[2]. As can be seen, a significant dissociation of CO2 

occurs, with meaningful formation of CO. It is also 

observed an important increase of N2 and formation 

of O. 

 Figure 22 presents the mass fraction distributions 

of the nine species along the body stagnation line, 

generated by [22]. As in [2] solution, a significant 

CO2 dissociation occurs close to the body and, more 

distinguishable, is the formation of CO, in relation 

to the [2] solution. It is also possible to note the 

significant formation of the O, due mainly to the 

CO2 dissociation. 

 
Figure 22. Mass fraction distributions at the 

stagnation line ([22]). 

10.1.2 Viscous, first order, structured results 

 
Figure 23. Pressure contours ([2]). 

 

 Figures 23 and 24 exhibit the pressure contours 

obtained by [2] and [22], respectively, in the viscous 

case. As can be observed, the pressure field 

generated by the [2] solution is more severe than 

that generated by the [22] solution. Moreover, the 

shock region generated by the [22] scheme is closest 

to the blunt nose than the same region generated by 

the [2] scheme. This behavior suggests that the 
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shock profile of the [22] scheme is more realistic, 

closest to the blunt nose. The shock is generated 

more precisely by both schemes and with better 

characteristics than the inviscid shock. 

 
Figure 24. Pressure contours ([22]). 

 
Figure 25. Mach number contours ([2]). 

 
Figure 26. Mach number contours ([22]). 

 

 Figures 25 and 26 present the Mach number 

contours obtained by [2] and [22], respectively. The 

[2] solution is more dissipative, generating bigger 

regions of supersonic flow, close to the wall. 

Quantitatively, there are not meaningful differences. 

 
Figure 27. Translational/Rotational temperature 

contours ([2]). 

 
Figure 28. Translational/Rotational temperature 

contours ([22]). 

 
Figure 29. Vibrational temperature contours ([2]). 

 

 Figures 27 and 28 exhibit the 

translational/rotational temperature contours 
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generated by the [2] and [22], respectively. In this 

viscous case, temperatures peaks above 24,000K are 

observed. In this range, the radiation heat transfer 

phenomenon is predominant and justifies the use of 

a blunt slender body to fly at the Mars atmosphere. 

The normal shock wave generated by the [2] scheme 

is more symmetrical and heater than the [22] one. 

 Figures 29 and 30 show the vibrational 

temperature contours obtained by [2] and [22], 

respectively. The vibrational temperature contours 

generated by the [22] scheme are higher than the 

respective ones due to [2]. Moreover, the shock 

layer is confined to a smaller region, close to the 

wall, than the [2] shock layer region. 

 
Figure 30. Vibrational temperature contours ([22]). 

 
Figure 31. Mass fraction distributions at the 

stagnation line ([2]). 

 

 Figure 31 exhibits the mass fraction distributions 

of the nine species obtained from the [2] scheme. A 

discrete dissociation of the CO2 is observed. As also 

noted the formations of CO and O are also seen, 

being more discrete than the dissociation of CO2. 

 
Figure 32. Mass fraction distributions at the 

stagnation line ([22]). 

 

Figure 32 shows the mass fraction distributions of 

the nine species obtained from the [22] scheme. A 

significant dissociation of CO2 is seen. The 

production of CO is also very meaningful, as also 

the formation of O, mainly due to the dissociation of 

CO2. It is also noted the increase in the N2 

formation. 

10.1.3 Inviscid, second order, structured results 

Figures 33 and 34 show the pressure contours 

obtained by [2] and [22], respectively. The most 

strength pressure field is due to [2]. Both solutions 

present good symmetry properties. The pressure 

peak due to [2] reaches a value of 664 unities, 

whereas this peak due to [22] reaches a value of 

553. 

 
Figure 33. Pressure contours ([2]). 

 

 Figures 35 and 36 present the Mach number 

contours due to [2] and [22], respectively. The two 

Mach number fields are very similar, quantitatively 
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and qualitatively. The region of supersonic field is 

more extent in the [2] solution. 

 
Figure 34. Pressure contours ([22]). 

 
Figure 35. Mach number contours ([2]). 

 
Figure 36. Mach number contours ([22]). 

 

 Figures 37 and 38 show the 

translational/rotational temperature contours 

obtained by [2] and [22], respectively. The 

temperature fields due to [2] and [22] reach 

maximum peaks of 20,840K and 17,233K, less 

intense than in the inviscid results. Again these 

peaks are concentrated in the blunt nose region. 

 
Figure 37. Translational/Rotational temperature 

contours ([2]). 

 
Figure 38. Translational/Rotational temperature 

contours ([22]). 

 
Figure 39. Vibrational temperature contours ([2]). 

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS
Edisson Sávio De Góes Maciel, 
Amilcar Porto Pimenta

E-ISSN: 2224-3429 47 Issue 1, Volume 8, January 2013



 
Figure 40. Vibrational temperature contours ([22]). 

 

 Figures 39 and 40 show the vibrational 

temperature contours obtained [2] and [22], 

respectively. The hot shock layer of the [22] 

solution is confined to a smaller region than the hot 

shock layer of the [2] solution. The [2] solution is 

smoother than the [22] one. Moreover, the [22] 

solution is more intense than the respective one of 

[2]. 

 The 41 exhibits the mass fraction distributions 

along the body stagnation line obtained by the [2] 

scheme. Again a very discrete dissociation of the 

CO2 is observed. The formation of CO and O are 

also very discrete. 

 
Figure 41. Mass fraction distributions at the 

stagnation line ([2]). 

 

 Figure 42 presents the mass fraction distributions 

generated by the [22] algorithm. It is possible to 

note a more significant CO2 dissociation than in the 

[2] case. As a consequence, the CO and O 

formations are also more pronounced in relation to 

the [2] solution. The production of C and CN are 

less pronounced. 

 
Figure 42. Mass fraction distributions at the 

stagnation line ([22]). 

10.1.4 Viscous, second order, structured results 

Figures 43 and 44 exhibit the pressure contours 

obtained by [2] and [22], respectively. The shock 

wave, in both cases, is well captured. The solution 

of [22] estimates a minor shock standoff distance. 

Good symmetry properties are observed in both 

solutions. The [2] pressure field is again more 

severe than that generated by [22]. 

 
Figure 43. Pressure contours ([2]). 

 

 Figures 45 and 46 show the Mach number 

contours generated by [2] and [22], respectively. As 

can be observed, the [2] scheme is more dissipative, 

spreading the low supersonic region around the 

body, whereas the [22] scheme only allows the low 

supersonic region at the body nose. 
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Figure 44. Pressure contours ([22]). 

 

 The contours of Mach number due to [2] are 

more symmetrical than those of [22]. The shock 

wave develops correctly, passing from a normal 

shock wave, going to oblique shock waves and 

finishing with Mach waves. 

 
Figure 45. Mach number field ([2]). 

 
Figure 46. Mach number field ([22]). 

 
Figure 47. Translational/Rotational temperature 

contours ([2]). 

 

 Figures 47 and 48 show the 

translational/rotational temperature contours 

obtained by [2] and [22], respectively. Both 

temperature fields are close to 25,000K. It is clear 

the high temperature at the body nose, mainly in the 

[2] scheme. 

 
Figure 48. Translational/Rotational temperature 

contours ([22]). 

 

 Figures 49 and 50 present the vibrational 

temperature contours obtained from [2] and [22], 

respectively. The [22] solution presents the highest 

temperature peak at the nose and along the body. 

The [2] solution presents a less severe temperature 

field. The shock layer of [22] is confined to a minor 

region than the respective one of the [2] scheme. 

 Figure 51 exhibits the mass fraction distributions 

along the stagnation line of the blunt body, 

generated by [2] scheme. As can be seen, a discrete 

dissociation of CO2 is captured by the [2] scheme, 

with minor formation of CO and O. Figure 52 shows 
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the mass fraction distributions along the stagnation 

line of the blunt body, captured by the [22] scheme. 

In this solution, a significant CO2 dissociation is 

observed, with meaningful formation of CO and O. 

 
Figure 49. Vibrational temperature contours ([2]). 

 
Figure 50. Vibrational temperature contours ([22]). 

 
Figure 51. Mass fraction distributions at the 

stagnation line ([2]). 

 
Figure 52. Mass fraction distributions at the 

stagnation line ([22]). 

10.1.5 Inviscid, first order, unstructured results 

In the unstructured case, only the [22] scheme 

yielded converged results. Figure 53 shows the 

pressure contours obtained by [22] algorithm. The 

non-symmetry is typical of unstructured solutions. 

The pressure peak is greater than the first order, 

inviscid, structured, [22] counterpart solution.  

 
Figure 53. Pressure contours ([22]). 

 

 Figure 54 exhibits the Mach number contours 

obtained by the [22] unstructured scheme. The 

subsonic region behind the shock is well 

characterized. Non-symmetry is also detected in this 

solution, but the shock wave pass from normal 

shock, through oblique shock waves until Mach 

wave far from the body. There are non-oscillations 

or pre-shock oscillations in the solution. 

 Figure 55 presents the translational/rotational 

temperature contours obtained by [22]. The 

temperature peak reaches a value of 18,367 K, 

comparable to the respective values obtained in the 
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structured case. Non-symmetry aspects are also 

observed in this solution, mainly at the nose region. 

 
Figure 54. Mach number contours ([22]). 

 
Figure 55. Translational/Rotational temperature 

contours ([22]). 

 
Figure 56. Vibrational temperature contours ([22]). 

 

 Figure 56 exhibits the vibrational temperature 

contours. There is a heating at the body surface, 

mainly at the lower wall surface, captured by the 

scheme. The vibrational temperature peak is 8,496 

K, far lower than the translational/rotational 

temperature. 

 
Figure 57. Velocity vector field. 

 

 Figure 57 presents the velocity vector field 

obtained by the [22] scheme around the blunt body 

geometry. The tangency condition is well satisfied 

by the solution of the numerical scheme. 

10.1.6 Viscous, first order, unstructured results 

Figure 58 exhibits the pressure contours obtained by 

the [22] scheme. The pressure peak reaches a value 

of 919 unities. Good symmetry characteristics are 

observed. The shock is well close to the blunt nose. 

 
Figure 58. Pressure contours ([22]). 

 

 Figure 59 shows the Mach number contours 

generated by the [22] algorithm. The low supersonic 

region formed behind the shock wave is well 

observed. It spreads around the blunt body surface. 

The shock wave behaves as expected, passing from 
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a normal shock wave, following oblique shock 

waves and finishing in Mach waves. 

 
Figure 59. Mach number contours ([22]). 

 

 Figure 60 exhibits the translational/rotational 

temperature contours obtained by [22]. The 

temperature peaks reaches approximately 24,945 K 

and is centred at the body nose. Figure 61 shows the 

vibrational temperature contours, presenting good 

symmetry characteristics. The maximum vibrational 

temperature is 10,173 K and propagates around all 

geometry surface. 

 
Figure 60. Translational/Rotational temperature 

contours ([22]). 

 

 Figure 62 presents the velocity vector field 

generated by the [22] scheme. The boundary layer 

has a very small thickness. The adherence and non-

permeability conditions are well satisfied. 

 
Figure 61. Vibrational temperature contours ([22]). 

 
Figure 62. Velocity vector field. 

10.1.7 Partial conclusions 

As important conclusion from the blunt body results 

with the [2] and [22] numerical schemes, it is 

notable the most physical solutions obtained with 

the [22] scheme, which captured considerable 

dissociation of CO2, with formation of CO and O, in 

all studied cases, as expected. So, in qualitative 

terms and considering structured solutions, the best 

behavior is attributed to the [22] scheme. 

10.1.8 Lift and drag coefficients 

In Table 10 are exhibited the lift and drag 

aerodynamic coefficients for all eight (8) structured 

cases studied in this work. As can be observed, the 

most accurate results is due to [2], first order in 

space, viscous case. The most severe drag 

coefficient is again due to [2], first order accurate, 

viscous case. In all cases, the zero value to the cL 

coefficient, which is the correct value to a zero 

angle of attack blunt body problem, is satisfied. 

 

 

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS
Edisson Sávio De Góes Maciel, 
Amilcar Porto Pimenta

E-ISSN: 2224-3429 52 Issue 1, Volume 8, January 2013



Table 10. Aerodynamic coefficients of lift and drag. 

 

Case cL cD 

[2] – 1
st
 – Inviscid -4.325x10

-15
 0.388 

[22] – 1
st
 – Inviscid -4.778x10

-14
 0.378 

[2] – 1
st
 - Viscous 9.198x10

-18
 0.467 

[22] – 1
st
 – Viscous -1.015x10

-14
 0.428 

[2] – 2
nd

 - Inviscid 7.195x10
-17

 0.385 

[22] – 2
nd

 – Inviscid -2.963x10
-14

 0.354 

[2] – 2
nd

 - Viscous -3.839x10
-17

 0.447 

[22] – 2
nd

 - Viscous -3.335x10
-15

 0.419 

10.1.9 Computational data 

The computational data of the present simulations 

are shown in Tab. 11. The best performance, 

converging in a minor number of iterations and 

wasting minor time, is due to the [22] scheme. The 

[22] scheme could also use the maximum CFL 

number by an explicit algorithm. 

 

Table 11. Computational data. 

 

Case CFL Iterations 

[2] – 1
st
 – Inviscid – S

(1)
 0.4 731 

[22] – 1
st
 – Inviscid – S 0.9 529 

[2] – 1
st
 – Viscous – S 0.2 3,964 

[22] – 1
st
 – Viscous – S 0.9 916 

[2] – 2
nd

 – Inviscid – S 0.2 1,589 

[22] – 2
nd

 – Inviscid – S 0.7 603 

[2] – 2
nd

 – Viscous – S 0.2 4,458 

[22] – 2
nd

 – Viscous – S 0.9 983 

[22] – 1
st
 – Inviscid – U

(2)
 0.6 572 

[22] – 1
st
 – Viscous – U 0.5 2,143 

(1)
 S : Structured; 

(2)
 U : Unstructured. 

 

 

11  Conclusions 
This work, first part of this study, describes a 

numerical tool to perform thermochemical non-

equilibrium simulations of reactive flow in two-

dimensions. The [2] and [22] schemes, in their first- 

and second-order versions, are implemented to 

accomplish the numerical simulations. The Euler 

and Navier-Stokes equations, on a finite volume 

context and employing structured and unstructured 

spatial discretizations, are applied to solve the “hot 

gas” hypersonic flows around a blunt body, around 

a double ellipse, and around an entry capsule, in 

two-dimensions. The second-order version of the [2] 

and [22] schemes are obtained from a “MUSCL” 

extrapolation procedure (details in [3]) in a context 

of structured spatial discretization. In the 

unstructured context, only first-order solutions are 

obtained. The convergence process is accelerated to 

the steady state condition through a spatially 

variable time step procedure, which has proved 

effective gains in terms of computational 

acceleration (see [4-5]). 

 The reactive simulations involve a Mars 

atmosphere chemical model of nine species: N, O, 

N2, O2, NO, CO2, C, CO, and CN. Fifty-three 

chemical reactions, involving dissociation and 

recombination, are simulated by the proposed 

model. The Arrhenius formula is employed to 

determine the reaction rates and the law of mass 

action is used to determine the source terms of each 

gas species equation. 

 The results have demonstrated that the most 

correct aerodynamic coefficient of lift in the entry 

blunt body problem is obtained by the [2] scheme 

with first-order accuracy, in a viscous formulation, 

to a reactive condition of thermochemical non-

equilibrium. Moreover, the [22] scheme presents the 

best mass fraction profiles at the stagnation line, 

characterizing good formation of O and CO. The 

results obtained with the double ellipse and the entry 

capsule geometries are presented in [31].  

 

 

12  Acknowledgments 
The first author acknowledges the CNPq by the 

financial support conceded under the form of a DTI 

(Industrial Technological Development) scholarship 

no. 384681/2011-5. He also acknowledges the infra-

structure of the ITA that allowed the realization of 

this work. 

 

 

References: 

 

[1] ESA, MARSNET – Assessment Study Report, 

ESA Publication SCI (91) 6, January, 1991. 

[2] B. Van Leer, Flux-Vector Splitting for the 

Euler Equations, Lecture Notes in Physics. 

Springer Verlag, Berlin, Vol. 170, 1982, pp. 

507-512. 

[3] C. Hirsch, Numerical Computation of Internal 

and External Flows – Computational Methods 

for Inviscid and Viscous Flows. John Wiley & 

Sons Ltd, 691p, 1990. 

[4] E. S. G. Maciel, Analysis of Convergence 

Acceleration Techniques Used in Unstructured 

Algorithms in the Solution of Aeronautical 

Problems – Part I, Proceedings of the XVIII 

International Congress of Mechanical 

Engineering (XVIII COBEM), Ouro Preto, MG, 

Brazil, 2005. [CD-ROM] 

[5] E. S. G. Maciel, Analysis of Convergence 

Acceleration Techniques Used in Unstructured 

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS
Edisson Sávio De Góes Maciel, 
Amilcar Porto Pimenta

E-ISSN: 2224-3429 53 Issue 1, Volume 8, January 2013



Algorithms in the Solution of Aerospace 

Problems – Part II, Proceedings of the XII 

Brazilian Congress of Thermal Engineering 

and Sciences (XII ENCIT), Belo Horizonte, 

MG, Brazil, 2008. [CD-ROM] 

[6] R. K. Prabhu, An Implementation of a 

Chemical and Thermal Nonequilibrium Flow 

Solver on Unstructured Meshes and 

Application to Blunt Bodies, NASA CR-

194967, 1994. 

[7] S. K. Saxena and M. T. Nair, An Improved Roe 

Scheme for Real Gas Flow, AIAA Paper 2005-

587, 2005. 

[8] J. Evans, W. L. Grose, and C. J. Schexnayder, 

Effects of Nonequilibrium Ablation Chemistry 

on Viking Radio Blackout, AIAA Paper 73-

0260, 1973. 

[9] C. Park, G. V. Candler, J. T. Howe, and R. L. 

Jaffe, Chemical-Kinetic Problems of Future 

NASA Missions, AIAA Paper 91-0464, 1991. 

[10] Table of Recommended Rate Constants for 

Chemical Reactions Occurring in Combustion, 

NSRDS-NBS 67, April, 1980. 

[11] G. F. Mitchell, and T. J. Deveau, Effects of a 

Shock on Diffuse Interstellar Cloud, J. 

Astrophysics, No. 266, 1983, pp. 646-661. 

[12] F. G. Blottner, M. Johnson, and M. Ellis, 

Chemically Reacting Viscous Flow Program 

for Multi-Component Gas Mixtures, SC-RR-

70-754, Sandia Laboratories, December, 1971. 

[13] G. V. Candler, Computation of 

Thermochemical Non-Equilibrium Martian 

Atmospheric Entry Flows, AIAA Paper 90-

1695, 1990. 

[14] R. N. Gupta, K. P. Lee, J. N. Moss, and K. 

Sutton, Viscous Shock Layer Solutions with 

Coupled Radiation and Ablation Injection for 

Earth Entry, AIAA Paper 90-1697, 1990. 

[15] C. R. Wilke, A Viscosity Equation for Gas 

Mixtures, J. Chem. Phys., Vol. 18, No. 4, 1950, 

p. 517. 

[16] G. V. Candler, and R. W. MacCormack, The 

Computation of Hypersonic Ionized Flows in 

Chemical and Thermal Non-Equilibrium, AIAA 

Paper 88-0511, 1988. 

[17] L. Landau, and E. Teller, Theory of Sound 

Dispersion, Physikalische Zeitschrift Der 

Sowjetunion, Vol. 10, 1936, pp. 34-43. 

[18] R. Monti, D. Paterna, R. Savino, and A. 

Esposito, Experimental and Numerical 

Investigation on Martian Atmosphere Entry, 

AIAA Paper 2001-0751, 2001. 

[19] R. C. Millikan and D. R. White, Systematics of 

Vibrational Relaxation, The Journal of 

Chemical Physics, Vol. 39, No. 12, 1963, pp. 

3209-3213. 

[20] A. F. P. Houwing, S. Nonaka, H. Mizuno, and 

K. Takayama, Effects of Vibrational Relaxation 

on Bow Shock Stand-off Distance for 

Nonequilibrium Flows, AIAA Journal, Vol. 38, 

No. 9, 2000, pp. 1760-1763. 

[21] C. Park, Assessment of Two-Temperature 

Kinetic Model for Ionizing Air, Journal of 

Thermophysics and Heat Transfer, Vol. 3, No. 

13, pp. 233-244, 1989. 

[22] M. Liou, and C. J. Steffen Jr., A New Flux 

Splitting Scheme, Journal of Computational 

Physics, Vol. 107, 1993, pp. 23-39. 

[23] R. Radespiel, and N. Kroll, Accurate Flux 

Vector Splitting for Shocks and Shear Layers, 

Journal of Computational Physics, Vol. 121, 

1995, pp. 66-78. 

[24] L. N. Long, M. M. S. Khan, and H. T. Sharp, 

Massively Parallel Three-Dimensional Euler / 

Navier-Stokes Method, AIAA Journal, Vol. 29, 

No. 5, 1991, pp. 657-666. 

[25] B. Van Leer, Towards the Ultimate 

Conservative Difference Scheme. II. 

Monotonicity and Conservation Combined in a 

Second-Order Scheme, Journal of 

Computational Physics, Vol. 14, 1974, pp. 361-

370. 

[26] P. L. Roe, In Proceedings of the AMS-SIAM 

Summer Seminar on Large-Scale Computation 

in Fluid Mechanics, Edited by B. E. Engquist 

et al, Lectures in Applied Mathematics, Vol. 

22, 1983, p. 163. 

[27] E. S. G. Maciel, and A. P. Pimenta, 

Thermochemical Non-Equilibrium Reentry 

Flows in Two-Dimensions – Part I, WSEAS 

TRANSACTIONS ON MATHEMATICS, Vol. 

11, Issue 6, June, 2012, pp. 520-545. 

[28] E. S. G. Maciel, Simulação Numérica de 

Escoamentos Supersônicos e Hipersônicos 

Utilizando Técnicas de Dinâmica dos  Fluidos  

Computacional,  Doctoral  Thesis,  ITA, CTA, 

São José dos Campos, SP, Brazil, 258p, 2002. 

[29] R. D. Kay, and M. P. Netterfield, 

Thermochemical Non-Equilibrium 

Computations for a Mars Entry Vehicle, AIAA 

Paper 93-2841, July, 1993. 

[30] NASA, Models of Mars' Atmosphere [1974], 

NASA SP-8010. 

[31] E. S. G. Maciel, and A. P. Pimenta, 

Thermochemical Non-Equilibrium Entry Flows 

in Mars in Two-Dimensions – Part II, to be 

submitted to WSEAS TRANSACTIONS ON 

APPLIED AND THEORETICAL 

MECHANICS. 

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS
Edisson Sávio De Góes Maciel, 
Amilcar Porto Pimenta

E-ISSN: 2224-3429 54 Issue 1, Volume 8, January 2013




